The deep deltoid ligament and stability after ankle fracture: a cadaveric study
D. McCormack, S. Kirmani, S. Aziz, R. Faroug, M. Solan, J. Mangwani
Background: Supination-external rotation (SER) injuries make up 80% of all ankle fractures. SER stage 2 injuries (AITFL and Weber B) are considered stable. SER stage 3 injury includes disruption of the posterior malleolus (or PITFL). In SER stage 4 there is either medial malleolus fracture or deltoid injury too. SER 4 injuries have been considered unstable, requiring surgery. The deltoid ligament is a key component of ankle stability, but clinical tests to assess deltoid injury have low specificity. This study specifically investigates the role of the components of the deep deltoid ligament in SER ankle fractures.
Aim: To investigate the effect of deep deltoid ligament injury on SER ankle fracture stability.
Methods: Four matched pairs (8 specimens) were tested using a standardised protocol. Specimens were sequentially tested for stability when axially loaded with a custom rig with up to 750N. Specimens were tested with: ankle intact; lateral injury (AITFL and Weber B); additional posterior injury (PITFL); additional anterior deep deltoid; additional posterior deep deltoid; lateral side ORIF. Clinical photographs and radiographs were recorded. In addition, dynamic stress radiographs were performed after sectioning the deep deltoid and then after fracture fixation to assess tilt of the talus in eversion.
Results: All specimens with an intact posterior deep deltoid ligament were stable when loaded and showed no talar tilt on dynamic assessment. Once the posterior deep deltoid ligament was sectioned there was instability in all specimens. Surgical stabilisation of the lateral side prevented talar shift but not talar tilt.
Conclusion: If the posterior deep deltoid ligament is intact SER fractures may be managed without surgery in a plantigrade cast. Without immobilisation the talus may tilt, risking deltoid incompetence.
Print