BOFAS Abstracts Archive

You can search for abstracts by using the search bar below.
Alternatively you can browse through podium and poster presentations by selecting the year and / or type below. You can further refine your search using tags or use the search bar.

 



Categories: Abstracts, 2019, Podium

Identification of healthy and tendinopathic cell sub-types in foot and ankle tendons using single cell transcriptomics

A. Kendal, R. Brown, C. Loizou, M. Rogers, R. Sharp, A. Carr

1University of Oxford, NDORMS, Oxford, United Kingdom

2Nuffield Orthopaedic Centre, Oxford, United Kingdom 

Introduction: Tendinopathy can commonly occur around the foot and ankle resulting in isolated rupture, debilitating pain and degenerative foot deformity. The pathophysiology and key cells involved are not fully understood. This is partly because the dense collagen matrix that surrounds relatively few resident cells limits the ability of previous techniques to identify and target those cells of interest. In this study, we apply novel single cell RNA sequencing (CITE-Seq) techniques to healthy and tendinopathic foot/ankle tendons. For the first time we have identified multiple sub-populations of cells in human tendons. These findings challenge the view that there is a single principal tendon cell type and open new avenues for further study.

Methods: Healthy tendon samples were obtained from patients undergoing tendon transfer procedures; including tibialis posterior and FHL. Diseased tendon samples were obtained during debridement of intractable Achilles and peroneal tendinopathy, and during fusion of degenerative joints.

Results: Single cell RNA sequencing with surface proteomic analysis identified 10 sub-populations of human tendon derived cells. These included groups expressing genes associated with fibro-adipogenic progenitors (FAPs) as well as ITGA7+VCAM1- recently described in mouse muscle but, as yet, not human tendon. In addition we have identified previously unrecognised sub-classes of collagen type 1 associated tendon cells. Each sub-class expresses a different set of extra-cellular matrix genes suggesting they each play a unique role in maintaining the structural integrity of normal tendon. Diseased tendon harboured a greater proportion of macrophages and cytotoxic lymphocytes than healthy tendon. This inflammatory response is potentially driven by resident tendon fibroblasts which show increased expression of pro-inflammatory cytokines. Finally, identification of a previously unknown sub-population of cells found predominantly in tendinopathic tissue offers new insight into the underlying pathophysiology.

Conclusions: Further work aims to identify novel proteins targets for possible therapeutic pathways.

Previous Article Hyaluronic acid injection for ankle sprains: a randomised controlled trial
Next Article Identification of stable supination external rotation ankle fractures - A consensus opinion
Print


Click thumbnail below to view poster / thumbnail:

Archive of Abstracts

2024   -   Prize Winners  |  All Abstracts
2023   -   Prize Winners  |  All Abstracts
2022   -   Prize Winners  |  All Abstracts
2021   -   Prize Winners  
2019   -   Podium  |  Poster
2018   -   Podium  |  Poster
2017   -   Podium  |  Poster
2016   -   Podium  |  Poster
2015   -   Podium  |  Poster
2014   -   Podium  |  Poster
2013   -   Podium  |  Poster
2011   -   All Abstracts
2009   -   All Abstracts
2008   -   All Abstracts
2007   -   All Abstracts
2006   -   All Abstracts
2005   -   All Abstracts
2004   -   All Abstracts
2002   -   All Abstracts
2001   -   All Abstracts
2000   -   All Abstracts
1999   -   All Abstracts
1998   -   All Abstracts
1997   -   All Abstracts
1996   -   All Abstracts
1995   -   All Abstracts
1994   -   All Abstracts
1993   -   All Abstracts
1991   -   All Abstracts
1990   -   All Abstracts
1989   -   All Abstracts
1987   -   All Abstracts
1985   -   All Abstracts
1983   -   All Abstracts